MATRA MHS

29C93A

ECMA 102/V110 Terminal Rate Adaptor Circuit (TRAC)

Description

The 29C93A is a Terminal Rate Adaptor Circuit (TRAC) performing speed adaptation between synchronous/asynchronous V24 terminals through ISDN 64 kbps "B" channel.

The TRAC can be connected to "B" channel using a programmable serial bus interface SLD, IOM... Programming is made in CLKSEL register.

The Master clock signal (7 or 12 MHz) is applied to input MCLK.

In asynchronous mode it is possible to exchange data between two terminals working at different speeds but using the same intermediate rate.

For synchronous terminals, the TRAC is able to work with network independent clocks, without addition of external circuits for phase compensation.

In X21 applications, the TRAC/V24 interface should be directly connected to the X21 controller 29C921 serial interface.

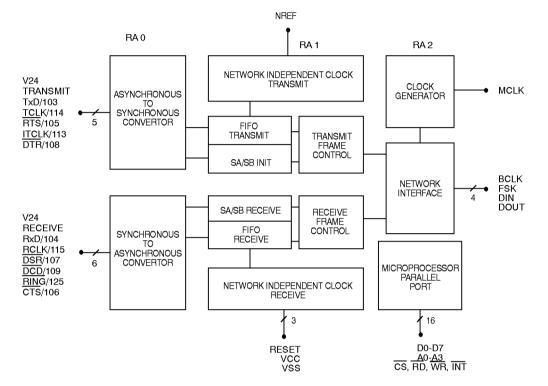
The Inband Parameters Exchange (IPE) is supported by the 29C93A. During initialization the microcontroller

sends a set-up message through the TRAC μ P interface. Parameters exchange is achieved through"B" channel on a byte basis at 64 kbps. Distant terminal parameters are sent through parallel port and processed by the external microprocessor, using external memory for buffering.

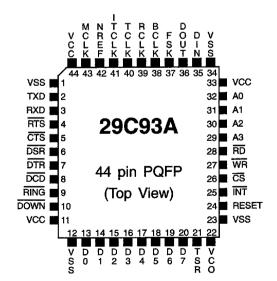
Synchronous IPE facilities provided are : On transmit side, IPE signals (State or Command) may be sent to distant TE many times (more than 32 times as specified in ECMA123) without μ P bus load increase (auto-repeat transmission allowed in sync. IPE). On receive side, IPE signals FF (INACTIVE), FE (IDLE), FB (FILL), ... will be filtered so that they are detected during the first reception (interrupt generation) and ignored during the following receptions.

V25 bis protocol (call establishment) is also supported in async. mode by connecting the μP bus to the V24 interface.

The TRAC together with ISDN layer 1/2 circuit using IOM/SLD/SSI interface provides a cost effective solution for implementation of a V24/ISDN Terminal Adaptor.


Features

- Network independent clock supported in SYNC mode
- Rate adaptation between V24 terminal and ISDN B channel
- Full ECMA 102/V110 processing for SYNC. and ASYNC. terminals
- 50 to 57600 bps user data rates for asynchronous transmissions
- 600 to 64000 bps user data rates for synchronous transmissions
- IPE control characters processing (XSTART, FILL, OFF, IDLE...)
- "End to End" or "local" flow control capability using XON/XOFF or 105/106 circuits


- Easy interface with X21 terminals through X21 controller 29C921
- V25bis protocol compatible (call set-up through µP bus)
- In band parameter exchange (ECMA123 IPE) via µP bus
- Transparent mode capability (64 kbps)
- V24 interface
- 8 bit microprocessor interface
- Programmable serial system interface (IOM, SLD, SSI ...)
- Programmable escape character
- Power down mode
- Package = PQFP 44

Interface

Block Diagram

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	IN/OUT
13-20	D0:D7	BIDIRECTIONAL DATA BUS	IN/OUT
29-32	A0:A3	REGISTER ADDRESS BUS	IN
26	CS	CHIP SELECT (ACTIVE LOW)	IN
28	RD	READ SIGNAL (ACTIVE LOW)	IN
27	WR	WRITE SIGNAL (ACTIVE LOW)	IN
25	ĪNT	INTERRUPT SIGNAL (ACTIVE LOW)	OUT
38	BCLK	SYSTEM BUS BIT CLOCK	IN*
43	MCLK	BAUD RATE MASTER CLOCK (12/7 MHz)	IN*
42	NREF	NETWORK REF CLOCK (192/512/1536/2048 kHz)	IN*
35	DIN	SYSTEM BUS DATA INPUT	IN*
36	DOUT	SYSTEM BUS DATA OUTPUT	IN/OUT
37	FSK	SYSTEM BUS FRAME SYNC (8 kHz)	IN*
41	ITCLK	V24 (113) CIRCUIT (NETWORK INDEP. CLOCK)	IN*
40	TCLK	V24 (114) CIRCUIT	OUT
39	RCLK	V24 (115) CIRCUIT	OUT
2	TxD	V24 (103) CIRCUIT (DATA TRANSMISSION)/X21 (T)	IN*
3	RxD	V24 (104) CIRCUIT (DATA RECEPTION)/X21 (R)	OUT
4	RTS	V24 (105) CIRCUIT (REQUEST TO SEND)	IN*
5	CTS	V24 (106) CIRCUIT (CLEAR TO SEND)	OUT
6	DSR	V24 (107) CIRCUIT (DATA SET READY)/X21 (I)	OUT
7	DTR	V24 (108) CIRCUIT (TERMINAL READY)/X21 (C)	IN*
8	DCD	V24 (109) CIRCUIT (DATA CARRIER DETECT)	OUT
9	RING	V24 (125) CIRCUIT (CALL INDICATE)	OUT
10	PDWN	POWER DOWN	IN*
24	RESET	RESET INPUT	IN*
21	TRS	TRANSMISSION START	OUT
1-12-23-34	VSS	GROUND	
11-22-33-44	VCC	POSITIVE SUPPLY (+ 5 V)	

* with internal pull-up resistor.

Functional Description

Asynchronous Mode

Data Format

The TRAC can be programmed (in FASYNC register) to receive following data formats (parity included) :

5 bits with parity
5 bits without parity
6 bits with parity*
7 bits with parity
7 bits without parity
8 bits without parity
8 bits with parity
9 bits with parity*

The parity can be odd, even, forced low, forced high. The number of stop bits can be 1,1.5,2 (see table 2 in &5.1.1. of ECMA 102 rec.) except for (*) which have a number of stop bits automatically fixed to 1 (if parity is used). Concerning the parity bit, and when the buffers are used (RLBUFF, RDBUFF, TLBUFF or TDBUFF), the TRAC behaves as follows :

<u>In reception</u>: the parity test (if parity is used, that means [P0, P1, P2] not equal to [0, 0, 0]) is reported in INT0 register (PARL bit on local side, PARD bit on distant side).

<u>In transmission</u>: The parity bit is calculated by the TRAC for all data formats. This parity bit can be forced right (by writing in TLBUFF or TDBUFF) or forced wrong (by writing in ERRTL or ERRTD). This feature is specially useful in flow control mode using 9 bit data format. For example, if data is received with an erroneous parity bit, it can be sent with the same erroneous parity bit using a single write in ERRTL (on local side) or in ERRTD (on distant side).

Break Management

The TRAC will also handle BREAK signal as specified in ECMA 102/V110 recommendation. If the circuit detects M to 2M + 3 bits of start polarity where M is the number of bits per character in the selected format including start/stop bits, it will transmit 2M + 3 bits of start polarity. If the circuit detects more than 2M + 3 bits of start polarity, it will transmit all these bits of start polarity. The 2M + 3 or more bits of start polarity, received from the transmitting side of a remote terminal shall be output to the receiving local terminal. The TRAC must receive from terminal/modem at least 2M bits of stop polarity on circuit 103, before being able to send further data characters (terminal or modem resynchronization).

Speed Adaptation

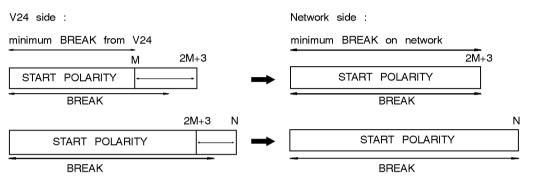
The overspeed and underspeed control will be automatically performed by the TRAC (&5.2.2. of ECMA 102/V110 rec.). If frames with only one stop bit per character are assembled, only one stop bit every 8 character might be removed by transmit controller. When overspeed is detected, the receiver will re-insert the deleted stop bit.

The TRAC circuit supports all ECMA 102/V110 specified asynchronous speeds (see table 1 below). Different speeds can be programmed in the receive and transmit path. Consequently terminals with different speeds can be connected. According to ECMA 102 specification, the 2 terminals must use the same intermediate rate.

19	ble		•
1a	on	1	٠

Data Rate	Rate Tolerance In %
50	+/-2.5
75	+/-2.5
110	+/-2.5
150	+/-2.5
200	+/-2.5
300	+/-2.5
600	+ 1 / -2.5
1200	+ 1 / -2.5
2400	+ 1 / -2.5
3600	+ 1 / -2.5
4800	+ 1 / -2.5
7200	+ 1 / -2.5
9600	+ 1 / -2.5
12000	+ 1 / -2.5
14400	+ 1 / -2.5
19200	+ 1 / -2.5
38400	*
57600	*

ECMA 102/V110 (except*) specification for ASYNC speeds.


Data Path

As stated earlier, local / end to end flow control and IPE re-entering modes can be implemented with the TRAC (and APPENDIX, register set : CONF and TFRM registers).

TEMIC MATRA MHS

For V25bis protocol implementation the associated microprocessor is used. The TRAC connects its V24 interface to parallel μ P port (UART feature). Once the call is established the UART block is connected back to

Figure 1.

CONF register).

Smart Modem

When working in transparent mode (no μ P action, data are going straight from V24 (103) input to DOUT output), the 29C93A may be programmed to detect an escape character and report it to the μ P (via an interrupt). To do this, the user should follow several steps summarized below :

- An escape sequence is 1, 2 or 3 word length. This length is stored in ESCMOD register.
- Only the first word of the sequence (loaded in ESCVAL register) will be compared with each of the incoming V24 data.
- The detection of this word in the stream is reported in ESCSTA register (BEG bit = beginning of sequence detected = 1) if it is enabled in ESCMOD register (EIBEG bit = 1).
- When the first character of the escape sequence is detected, the remaining data (until the sequence length is reached) are stored in a FIFO (at address 0F = ESCR). These data may be removed (filtered) from the data stream or sent toward the distant terminal depending on FSEQ bit in ESCMOD register.
- When the number of data received from the beginning of the sequence is equal to the sequence length, the END status bit in ESCSTA register is set to 1 if mask bit EIEND = 1 in ESCMOD.
- In one of the BEG or END bit is set, the ESC bit = global escape status bit will be set to 1 and will involve an active level on INT pin if unmasked (AIESC bit in MASK register = 1).
- Then the TRAC will automatically configure itself to "transmit flow control" mode (that is equivalent to

EPA = 1 in CONF register) if AUTO bit is set to 1 in ESCMOD register. In that case, the FC bit in ESCSTA will report the new configuration. EPA bit will remain unchanged.

RA0 for frame processing (APPENDIX, register set :

Local and remote loopback may also be programmed

(APPENDIX, register set : TFRM register)

- Then user can read the FIFO (via ESCR) in order to check if the received sequence is the expected one. Two pointers are available in the ESCSTA register :
 - WPT which points at the last received character (particularly useful to determine which is the last character received when the end of the sequence is not detected after a given delay).
 - RPT which points at the next character to read.
- Spurious sequence : if FSEQ = 1 (sequence remove from data stream), data may be lost if we do not pass automatically to flow control mode (we could not be able to insert this spurius sequence in the stream if characters follow).

Synchronous Block

The TRAC handles all ECMA 102 speeds for synchronous transmissions (see table 2). For speeds up to 19200 bps, a 80 bit frame is used. Above 19200 bps we will have :

For 48 kbps, a special 32 bits frame. It will handle the X, SA/SB process on the X, S1, S3, S4 bits.

For 56 kbps, a 64 bit frame without inband signalling (8th bit forced high, see & 5.5 of ECMA 102).

For 64 kbps, the TRAC will be transparent (with no frame and no inband signalling). This speed will also be used for Inband Parameters Exchange (IPE).

Interface to ISDN Driver

B Channel

The TRAC can be programmed to interface with various synchronous serial buses (and so, with most of S0 interface circuits on the market). Some of them are described in APPENDIX (register set, CLKSEL register).

The TRAC can also be programmed to transmit data on B1 or B2 channel (B2 bit in TFRM register). DOUT output will be in high impedance state except during B1 or B2. It means there will be no status/command exchange between TRAC and other ISDN circuit(s).

Transmit window width programming is made according to intermediate speed (bit V3...0 in CLKSEL register). Outside that window, DOUT will be in high impedance allowing data multiplexing according to I460. Appropriate FSK sync. pulses must be provided for each TRAC connected on the same DOUT line.

Table	2	:
-------	---	---

Data Rate	Intermediate Rate
600	8kbps
1200	8kbps
2400	8kbps
4800	8kbps
7200*	16kbps
9600	16kbps
12000*	32kbps
14400*	32kbps
19200	32kbps
48000	SINGLE STEP ADAPTATION
56000	SINGLE STEP ADAPTATION
64000	SINGLE STEP ADAPTATION

* As stated earlier the Network Independent Clock (NIC) mode will be supported by TRAC except for 7200/14400 bps.

Network Independent Clock

For SYNC transmission using Network Independent Clock, phase difference between network and V24 clocks (R1 rate) must be measured (see &8 of ECMA 102), that is to say between :

 a 20xR1 clock network synchronized generated from a 2048, 1536, 512 or 192 kHz clock connected to NREF input using a DPLL and a 12 or 7 MHz master clock. and a receive bit-timing sync. clock : V24 - 113 NETWORK INDEPENDENT TRANSMIT CLOCK (ITCLK).

Microprocessor Interface and Clocks

The TRAC has a 8 bit slave μP interface including :

- 8 bit parallel data port
- 4 bit address port for internal register selection
- 1 interrupt output, each interrupt source can be selectively masked (except loss of synchroni-zation interrupt).
- 1 Chip Select input
- RD/WR control inputs

The TRAC master clock MCLK (used by the UART baud generator) must be 12.288 MHz or 7.68 MHz (selected by an internal mode register). The TRAC also has a RESET input to clear internal registers and state machines.

V24 Interchange Circuits

All output interchange circuits can be monitored using the μP interface (via CMOD register at 00 address, fig. 3a). They also can be driven by SA, SB, and × bits recovered from incoming frame (except RING fig. 3b.). For example, in the "END TO END" flow control situation, the 105 interchange line may be driven either by CTS bit in CMOD register or by × bit from incoming frame depending on ECTS bit (also in CMOD register, figures 3a, 3b, 4b).

NOTE : X bit can only be driven by \overline{EX} bit in CFRM register (fig. 4a).

• Input interchange circuits 105 (RTS) and 108 (DTR) are continuously sampled and stored in EMOD (0a address) register. They can drive the associated SA, SB bits in outgoing frame (fig. 5a). In the opposite case, SA and SB can be driven independently in CFRM register (fig. 5b).

NOTE : Adaptation to X21 protocol controller (such as MHS 29C921) may be achieved using 108 ($\overline{\text{DTR}}$) V24 input as C (Command) X21 circuit and 107 ($\overline{\text{DSR}}$ V24 output as I (Indicate) X21 circuit.

Inband Parameter Exchange

Because the R line does not provide the capability of OUT-OF-BAND signalling (like the D channel with the S line), the V110 (APPENDIX I, 1988) or ECMA123

Τεμις

MATRA MHS

recommendation define an INBAND PARAMETER EXCHANGE (IPE) protocol to support :

- the transfer of the END-TO-END information required for the compatibility checking of data calls,
- an exchange of terminal adaptor parameter information, and
- an exchange of information related to maintenance operations.

Four IPE user data/intermediate rates are also recommended :

Table 3 :

Connection Type	IPE User Rate
unrestricted 64 kb/s	64 kb/s sync
restricted 64 kb/s	56 kb/s sync
32 kb/s intermediate rate	19.2 kb/s async
16 kb/s intermediate rate	9.6 kb/s async

Recommended user data/intermediate rates

The 29C93A supports IPE for all these speeds (and even for all RA0 synchronous rates) but character filte-ring works only at 64 or 56 kb/s (with synchronous data).

Synchronous IPE also requires transmission of at least 32 times for each command byte. This feature is avail-able in the TRAC. A repeated transmission is obtained by writing in IPEBUFF register. TDI status bit will appear in INTO register after each transmission, but no interrupt is generated on INT pin, even if it is unmasked (AITD = 1 in MASK register. To stop the repetition (for example to send high-low IPE data bytes) we just have to write a byte in TDBUFF, which will be shifted only once. Then the transmitter sends "1" (INACTIVE character), and TDI bit is set until a new datum or command is written in TDBUFF or IPEBUFF.

Summary

a) synchronous IPE (synchronous primary mode)

- on DIN/DOUT : bytes aligned with FSK network clock (no start bit, no frame),
- user data rate : 56 or 64 KBPS

 for restricted 64 kb/s rate, the MSB of the byte must be set to 1.

29C93A

- byte filtering in reception. (see table 4)
- byte transmission with auto-repeat capability (using IPEBUFF register).

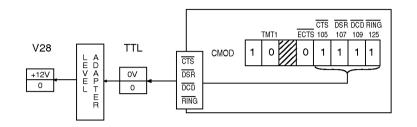
b) asynchronous IPE (asynchronous primary mode)

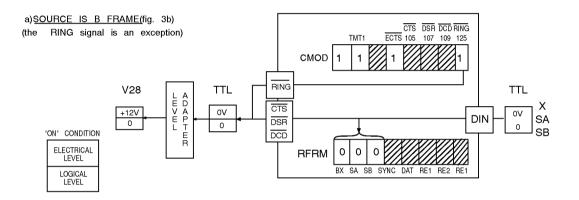
- on DIN/DOUT : rate adaptation (V110/ ECMA102) ==> FRAME,
- asynchronous format (START + STOP),
- user data rate : 600 to 19200 kb/s.

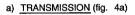
Byte Filtering

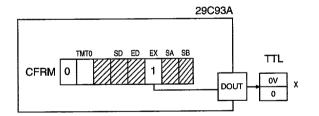
Table 4 :

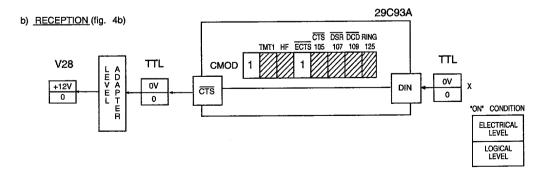
	Value (H)	Message
	E0	PARAM-0
	E2	PARAM-4
C O	E4	PARAM-2
М	E6	X_START
M A	E8	PARAM-1
N D	EA	RA-VERSION
	EC	PARAM-3
	EE	MAINTENANCE
S	FA	READY
T A	FB	FILL
T U	FE	IDLE
S	FF	INACTIVE


Power Down

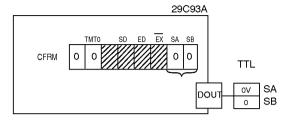

Driving pin PDWN low activates the power down mode. Once in power down, most of the signals (see table 5) are disconnected to reduce power consumption. The TRAC is thus isolated from its environment (this feature is useful for board testing).

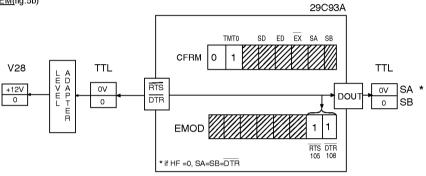

V24 SIGNALS (from 29C93A)


a)SOURCE IS CMOD REGISTER (fig. 3a)



BIT MANAGEMENT





a)SOURCE IS CFRM REGISTER (fig. 5a)

V24 SIGNALS SA/SB GENERATION

a)S<u>OURCE_IS_MODEM(</u>fig.5b)

Table 5 : Power Down Mode.

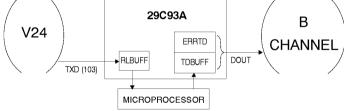
Pin	Input	Output
D0:D7	DISCONNECTED	HI-Z
A0:A3	DISCONNECTED	-
CS	DISCONNECTED	-
RD	DISCONNECTED	-
WR	DISCONNECTED	-
INT	-	FORCED HIGH
BCLK	DISCONNECTED	-
MCLK	DISCONNECTED	-
NREF	DISCONNECTED	-
DIN	DISCONNECTED	-
DOUT	-	HI-Z
FSK	DISCONNECTED	-
ITCLK	DISCONNECTED	-
TCLK	-	FORCED HIGH
RCLK	-	FORCED HIGH
TXD	-	-
RXD	-	FORCED HIGH
RTS	-	-
CTS	-	FORCED HIGH
DSR	-	FORCED HIGH
DTR		-
DCD	-	FORCED HIGH
RING	-	FORCED HIGH
RESET	-	-

TEMIC MATRA MHS

Appendix – Register Set

CMOD 00H 81H 1 TMT1 HF ECTS DTS DCD RING RW CFRM 00H 00H 0 TMT0 - SD ED EX SA SB RW CONF 01H 00H AT AS EPA SPA LOCAL APRIM TINC RNIC RW TFRM 02H 00H - RFILT SPRIM TBL BL TBD VD B2 RW CLKSEL 03H 00H BTYPI BTYP0 REF1 REF0 V3 V2 V1 V0 RW ASCLK 04H 20/40H - TRSEL RRSEL AR4 AR3 AR2 AR1 AR0 RW ASCLK 04H 20/40H - TRSEL RRSEL AR4 AR3 AR2 AR1 AR0 RW ASCLK 04H 20/40H - TRSEL RRSEL AR4 AR3 AR2 AR1 AR0 RW ASS 06H 00H <td< th=""><th>NAME</th><th>ADD</th><th>RESET</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>RD/WR</th></td<>	NAME	ADD	RESET									RD/WR
CONF01H00HATASEPASPALOCALAPRIMTINCRNICRWTFRM02H00H-RFILTSPRIMTBLBLTBDVDB2RWCLKSEL03H00HBTYP1BTYP0REF1REF0V3V2V1V0RWASCLK04H20/40H-TRSELRRSELAR4AR3AR2AR1AR0RWFASYNC05H00HH0NS1NS0ND1ND0P2P1P0RWMASK06H00HAIBAIESCAISXAIPARAITDAIRLAITLAIRDRWRLBUFF07H0CHLOCAL RECEIVE BUFFERRRTLBUFF08H00HDISTANT RECEIVE BUFFERWRFRM09HEFHEXSASBSYNCDATRE3RE2RE1RERRTD09H-TRANSMISSION TO DISTANT TRANSMIT BUFFERWWWWWWWINTO0BH00HISELPARLRLITLIPARDDSXRDITDIRIPE COMMAND TRANSMIT BUFFERWISELESCBRKLEBKDWWINT10CH00HISELESCBRKLOSYNCBRKDOVRSRERKT0CHBRKLEBKDWWISELESCRWIN	CMOD	00H	81H	1	TMT1	HF	ECTS	CTS	DSR	DCD	RING	R/W
TFRM02H00H-RFILTSPRIMTBLBLTBDVDB2RWCLKSEL03H00HBTYP1BTYP0REF1REF0V3V2V1V0RWASCLK04H20/40H-TRSELRRSELAR4AR3AR2AR1AR0RWASCLK04H20/40H-TRSELRRSELAR4AR3AR2AR1AR0RWASCLK04H20/40H-TRSELRRSELAR4AR3AR2AR1AR0RWFASYNC05H00HH0NS1NS0ND1ND0P2P1P0RWMASK06H00HAIBAIESCAISXAIPARAITDAIRLAITLAIRDRWRLBUFF07H0CHLOCALRECEIVE BUFFERRWRDBUFF08H00HDISTANT RECEIVE BUFFERWRFRM09HEFHBXSASBSYNCDATRE3RE2RE1RERRTD09H-TRANSMISSION TO DISTANT WITH WRONG PARITYWEMCD0AH*RTSDTRRINT00BH00HISELPARLRLITLIPARDDSXRDITDIRIPEBUFF0BH-IPECOMMAND TRANSMIT BUFFERWWINT1OCHOHISELESCBRKLOVR24-DSYNCBRKD<	CFRM	00H	00H	0	тмто	-	SD	ED	EX	SA	SB	R/W
CLKSEL 03H 00H BTYP1 BTYP1 BTYP0 REF1 REF0 V3 V2 V1 V0 RW ASCLK 04H 20/40H - TRSEL AR4 AR3 AR2 AR1 AR0 RW FASYNC 05H 00H H0 NS1 NS0 ND1 ND0 P2 P1 P0 RW MASK 06H 00H AIB AIESC AISX AIPAR AITD AIRL AITL AIRD RW RLBUFF 07H 0CH LOCAL RECEIVE BUFFER R	CONF	01H	00H	AT	AS	EPA	SPA	LOCAL	APRIM	TINC	RNIC	R/W
ASCLK 04H 20/40H - TRSEL AR4 AR3 AR2 AR1 AR0 R/W FASYNC 05H 00H H0 NS1 NS0 ND1 ND0 P2 P1 P0 R/W MASK 06H 00H AIB AIESC AISX AIPAR AITD AIRL AITL AIRD R/W MASK 06H 00H AIB AIESC AISX AIPAR AITD AIRL AITL AIRD R/W RLBUFF 07H 0CH LOCAL TRANSMIT BUFFER R R W R R R W R R R W R R R R R R W R	TFRM	02H	00H	-	RFILT	SPRIM	TBL	BL	TBD	VD	B2	R/W
FASYNC05H00HH0NS1NS0ND1ND0P2P1P0RWMASK06H00HAIBAIESCAISXAIPARAITDAIRLAITLAIRDRWRLBUFF07H0CHLOCAL RECEIVE BUFFERRTLBUFF07H00HLOCAL TRANSMIT BUFFERWRDBUFF08H00HDISTANT RECEIVE BUFFERRTDBUFF08H00HDISTANT TRANSMIT BUFFERWRFRM09HEFHBXSASBSYNCDATRE3RE2RE1RERRTD09H-TRANSMISSION TO DISTANT WITH WRONG PARITYWEMCD0AH*RTRANSMISSION TO LOCAL WITH WRONG PARITYWINT00BH00HISELPARLRLITLIPARDDSXRDITDIRINT10CH00HISELESCBRKLOVR24DSYNCBRKDOVRSRERKT0CHBRKLEBKDWINT10CH00HISELESCBRKLOVR24DSYNCBRKDOVRSRERKT0CH0FSEQAUTOEIENDEIBEGENESCLONGIRW	CLKSEL	03H	00H	BTYP1	BTYP0	REF1	REF0	VЗ	V2	V1	VO	R/W
MASK06H00HAIBAIESCAISXAIPARAITDAIRLAITLAIRDR/WRLBUFF07H0CHLOCAL RECEIVE BUFFERRTLBUFF07H00HLOCAL TRANSMIT BUFFERWRDBUFF08H00HDISTANT RECEIVE BUFFERRTDBUFF08H00HDISTANT RECEIVE BUFFERWRFRM09HEFHBXSASBSYNCDATRE3RE2RE1RERRTD09H-TRANSMISSION TO DISTANT WITH WRONG PARITYWEMCD0AH*RTSDTRRINTO0BH00HISELPARLRLITLIPARDDSXRDITDIRINT10CH00HISELESCBRKLOVR24-DSYNCBRKDOVRSRERKT0CHBRKLEBKD-WINT10CH00HISELESCBRKLOVR24-DSYNCBRKDOVRSRERKT0CHBRKLEBKDWWESCMOD0DH00H0FSEQAUTOEIENDEIBEGENESCLONG0RW	ASCLK	04H	20/40H	-	TRSEL	RRSEL	AR4	AR3	AR2	AR1	AR0	R/W
RLBUFF 07H 0CH LOCAL RECEIVE BUFFER R TLBUFF 07H 00H LOCAL TRANSMIT BUFFER W RDBUFF 08H 00H DISTANT RECEIVE BUFFER R TDBUFF 08H 00H DISTANT RECEIVE BUFFER R RFRM 09H EFH BX SA SB SYNC DAT RE3 RE2 RE1 R ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INT0 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W W INT1 0CH 00H ISEL ESC BRKL OVR24 DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD W INT1 0CH 0H ISEL ESC BRKL -<	FASYNC	05H	00H	Но	NS1	NS0	ND1	ND0	P2	P1	P0	R/W
TLBUFF 07H 00H LOCAL TRANSMIT BUFFER W RDBUFF 08H 00H DISTANT RECEIVE BUFFER R TDBUFF 08H 00H DISTANT TRANSMIT BUFFER W RFRM 09H EFH BX SA SB SYNC DAT RE3 RE2 RE1 R ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W EMCD 0AH * - - - RTS DTR R ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W W INT1 OCH 00H ISEL ESC BRKL OVR24 DSYNC BKD OVRS R ERKT 0CH - - BRKL - - EBKD W INT1 0CH 00H ISEL ESC	MASK	06H	00H	AIB	AIESC	AISX	AIPAR	AITD	AIRL	AITL	AIRD	R/W
RDBUFF 08H 00H DISTANT RECEIVE BUFFER R TDBUFF 08H 00H DISTANT RECEIVE BUFFER R TDBUFF 08H 00H DISTANT TRANSMIT BUFFER W RFRM 09H EFH BX SA SB SYNC DAT RE3 RE2 RE1 R ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W EMCD 0AH * - - - RTS DTR R ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INT0 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W W INT1 OCH OH ISEL ESC BRKL OVR24 DSYNC BRKD OVRS R ERKT OCH - - BRKL - - EBKD W INT1 OCH 0 FSEQ AUTO	RLBUFF	07H	0CH		LOCAL RECEIVE BUFFER							R
TDBUFF 08H 00H DISTANT TRANSMIT BUFFER W RFRM 09H EFH BX SA SB SYNC DAT RE3 RE2 RE1 R ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W EMCD 0AH * - - - RTS DTR R ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INT0 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W W INT1 0CH 00H ISEL ESC BRKL OVR24 DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD W INT1 0CH 00H 0 FSEQ AUTO EIBEG ENSC LONG1 RW	TLBUFF	07H	00H		LOCAL TRANSMIT BUFFER							w
RFRM 09H EFH BX SA SB SYNC DAT RE3 RE2 RE1 R ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W EMCD 0AH * - - - RTS DTR R ERRTL 0AH * - - - - RTS DTR R ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W W INT1 0CH 00H ISEL ESC BRKL OVR24 DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD W ESCMOD 0DH 00H 0 FSEQ AUTO EIBEG ENESC LONG1 RW	RDBUFF	08H	00H		DISTANT RECEIVE BUFFER							R
ERRTD 09H - TRANSMISSION TO DISTANT WITH WRONG PARITY W EMCD 0AH * - - - R ERRTL 0AH * - - - R ERRTL 0AH * TRANSMISSION TO LOCAL WITH WRONG PARITY W INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R INT1 0CH 00H ISEL ESC BRKL OVR24 OSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD W ESCMOD 0DH 00H 0 FSEQ AUTO EIEND EIBEG ENESC LONG1 R/W	TDBUFF	08H	00H		DISTANT TRANSMIT BUFFER							\overline{w}
EMCD 0AH * - - - - RTS DTR R ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W INT1 0CH 00H ISEL ESC BRKL OVR24 - DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD W ESCMOD 0DH 00H 0 FSEQ AUTO EIBEG ENESC LONG1 LONG0	RFRM	09H	EFH	BX	SA	SB	SYNC	DAT	RE3	RE2	RE1	R
ERRTL 0AH - TRANSMISSION TO LOCAL WITH WRONG PARITY W INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W INT1 0CH 00H ISEL ESC BRKL OVR24 - DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD - W ESCMOD 0DH 00H 0 FSEQ AUTO EIBEG ENESC LONG1 R/W	ERRTD	09H	-	TRA	ANSMIS	SION TO	O DISTA	NT WIT	H WRO	NG PAF	NTY	w
INTO 0BH 00H ISEL PARL RLI TLI PARD DSX RDI TDI R IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W INT1 0CH 00H ISEL ESC BRKL OVR24 - DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD - W ESCMOD 0DH 00H 0 FSEQ AUTO EIBEG ENESC LONG1 LONG0 R/W	EMCD	0AH	*	-	-	-	-	-	-	RTS	DTR	R
IPEBUFF 0BH - IPE COMMAND TRANSMIT BUFFER W INT1 0CH 00H ISEL ESC BRKL OVR24 - DSYNC BRKD OVRS R ERKT 0CH - - BRKL - - EBKD - W ESCMOD 0DH 00H 0 FSEQ AUTO EIEND EIBEG ENESC LONG1 LONG0 R/W	ERRTL	0AH	-	TF	RANSMI	SSION	TO LOC	AL WITI	H WRON	NG PAR	ITY	\overline{w}
INT1 OCH OOH ISEL ESC BRKL OVR24 - DSYNC BRKD OVRS R ERKT OCH BRKL EBKD - W ESCMOD ODH OOH O FSEQ AUTO EIEND EIBEG ENESC LONG1 LONGO R/W	INTO	овн	00H	ISEL	PARL	RLI	TLI	PARD	DSX	RDI	TDI	R
ERKT 0CH - - BRKL - - EBKD - W ESCMOD 0DH 00H 6 FSEQ AUTO EIEND EIBEG ENESC LONG1 LONG0 R/W	IPEBUFF	овн	-		IPE COMMAND TRANSMIT BUFFER							w
ESCMOD 0DH 00H 0 FSEQ AUTO EIEND EIBEG ENESC LONG1 LONG0 R/W	INT1	0CH	00H	ISEL	ESC	BRKL	OVR24	-	DSYNC	BRKD	OVRS	R
	ERKT	0CH	-	_	-	BRKL	-	-	-	EBKD	-	\overline{W}
ESCSTA 0EH 00H ENESC FC RPT1 RPT0 WPT1 WPT0 END BEG R	ESCMOD	ODH	00H	0	FSEQ	AUTO	EIEND	EIBEG	ENESC	LONG1	LONGC	R/₩
	ESCSTA	0EH	00H	ENESC	FC	RPT1	RPT0	WPT1	WPT0	END	BEG	R
ESCR 0FH 0CH ESCAPE SEQUENCE RECEIVED (3 BYTES MAX) R	ESCR	0FH	0CH		ESCAPE SEQUENCE RECEIVED (3 BYTES MAX)						R	
ESCVAL 0FH 00H PROGRAMMABLE ESCAPE VALUE W	ESCVAL	0FH	00H		F	PROGR	AMMABI	LE ESC	APE VAI	LUE		\overline{w}

* depends on circuit input states

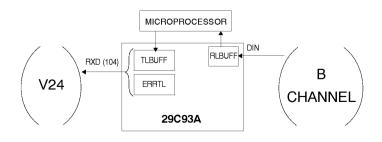

TEMIC

MATRA MHS

CMOD A MSB	ADDRESS = 00H	RESET = 8	31H R/W	MODEM SIG	NAL CONT	ROL REGISTE	ER LSB
1	TMT1	HF	ECTS	CTS	DSR	DCD	RING
			•	106	107	109	125
TMT1 :	DSR/DCD MO	DEM SIGNA	LS SOURCE	SELECT.			
	TMT1 =		CMOD regis $n = not \overline{DSR} b$ $n = not \overline{DCD}$	oit,			
	TMT1 =	= 1 – Source is DSR pir DCD pir	n = SA = SB i = SA if HF =	f HF = 0,			
HF :		– FUL <u>L DU</u> PI	LEX / X21 pin = SA = S LEX n = SA,				
ECTS :		$0 - \overline{\text{CTS}}$ pin =		n incoming fram	ne.		
$\overline{\text{CTS}}$:	COMPLEMEN	TARY VALU	E OF CTS (C	LEAR TO SEN	D-106) PIN W	HEN $\overline{\text{ECTS}} = 0$)
DSR :		TARY VALU = 0 – DSR pin		DATA SET REA t.	DY-107) PIN V	WHEN TMT1 =	= 0
DCD : COM	IPLEMENTARY WHEN TMT1	VALUE OF $\overline{\Gamma}$	DCD (DATA C	CARRIER DET	ECT-109) PIN		
RING :		TARY VALU in = not RING		CALLING IND	DICATOR-125)	PIN	
CMOD regine For 2 success	AD OPERATION ster is read at addr ssive read operati MOD register will	ess 0 if the MS ons at address	0, we always	will recover 2	different values	s of this MSB,	
	READ operation MSB recovered REGISTER com	1 :	n 1 CMOD	n+ 1 0 CFRM	n+2 1 CMOD		
CFRM A MSB	ADDRESS = 00H	$\mathbf{RESET} = 0$	0H W F	RAME SIGNA	L CONTRO	L REGISTER	LSB
0	TMT0		SD	ED	EX	SA	SB
TMT0 :		= 0 – Source is SA (bit fram SB (bit fram = 1 – Source is SA (bit fram	CFRM regist e) = SA (bit r e) = SB (bit r	egister) egister) if HF = 0			

 $=\overline{\text{RTS}}$ pin if HF = 1

SD :	DATA BIT SELECT SD = 0 - D = ED (for example $ED = 0$ during resync mode) SD = 1 - D = TxD (103)										
ED :	DATA BIT TO	BE TRANSM	ITTED WHEN	N SD = 0							
$\overline{\mathrm{EX}}$:	COMPLEMEN	COMPLEMENTARY VALUE OF X BIT TO BE TRANSMITTED									
SA:	VALUE OF SA	VALUE OF SA BIT TO BE TRANSMITTED WHEN $TMT0 = 0$									
SB:	VALUE OF SE	BIT TO BE 1	RANSMITTE	ED WHEN TM	$\Gamma 0 = 0$						
NOTE : RE	AD OPERATION	I (SEE CMOD	REGISTER)								
CONF MSB	ADDRESS = 0	1H RESE	ET = 00H	R/W CO	NFIGURATIO	N REGISTER	LSB				
AT	AS	EPA	SPA	LOCAL	APRIM	TNIC	RNIC				
AT :	Frame transmit $AT = 0$ -	FRAME ENABLE Frame transmit and synchronization enable after communication has been established. AT = 0 – DOUT pin high impedance, AT = 1 – transmit enable.									
AS :	ASYNC / SYNC SELECT AS = 0 – Synchronous, AS = 1 – Asynchronous.										
EPA :	 TRANSMIT FLOW CONTROL TDBUFF/RLBUFF register access through μP bus allowing local flow control between TRAC and near end terminal. EPA = 0 – access locked, EPA = 1 – access enabled : 										
			2909	3A	В						

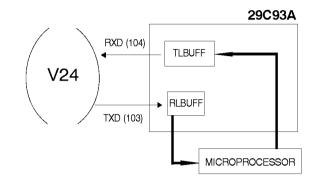


SPA : RECEIVE FLOW CONTROL

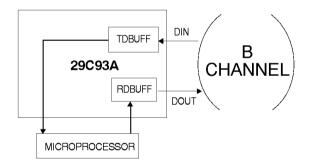
TLBUFF/RDBUFF register access through μP bus allowing distant flow control operation between TRAC and far-end terminal.

SPA=0 – access locked,

SPA=1 – parallel input/output enabled :

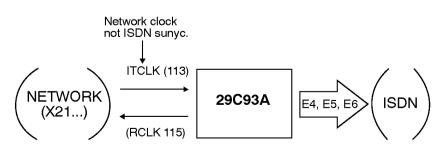


MATRA MHS


LOCAL : LOCAL MODE ENABLE (for V25bis)

TLBUFF/RLBUFF registers access through μ P bus allowing exchange with local terminal. LOCAL = 0 – access locked,

LOCAL = 1 - parallel input/output enabled.


APRIM = 1 - access enabled :

TNIC : ALLOWS E4, E5, E6 GENERATION IN TRANSMIT FRAME (except for 7.2/12/14.4 kbps, comparison between ITCLK (113) and ISDN network clocks).

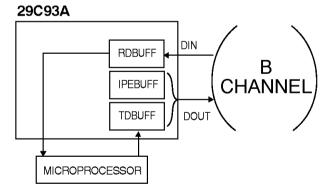
TNIC = 0 - no compensation,

TNIC = 1 - compensation enabled - E bit generation.

RNIC : E4, E5, E6 bit decoding – TCLK/RCLK clock compensation. RNIC = 0 - no compensation, RNIC = 1 - compensation enabled – E bit decoding.

FFRM MSB	ADDRESS = 0	2H RESE	ET = 00H	R/W TR	ANSMIT FRA	ME REGISTE	R LSB
•	RFILT	SPRIM	TBL	BL	TBD	BD	B2

RFILT : FILTERING FOR INCOMING DATA


SPRIM : SYNCHRONOUS PRIMARY ACCESS (FOR INBAND PARAMETER EXCHANGE – 56/64 kbps) Enables parameter exchange after communication is established and before so

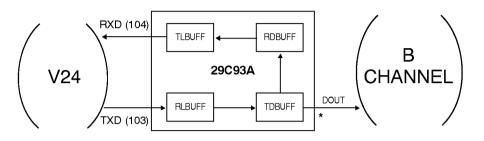
Enables parameter exchange after communication is established and before synchronization

RFILT SPRIM

111 1121	DI IUIII	
0	0	no primary access
0	1	access to 64 (or 56) kbps synchronous primary mode
1	0	reserved
1	1	access to 64 (or 56) kbps synchronous primary mode with IPE facilities
		(command byta, transmission with auto repeat via IDERUFE and command byta

(command byte transmission with auto repeat via IPEBUFF and command byte filtering in reception)

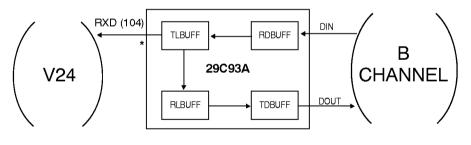
Τεміс


MATRA MHS

TBL :DATA OUTPUT ENABLE (with LOCAL LOOPBACK mode only)TBL = 0 - data not enabled on B output (forced to 1)TBL = 1 - data enabled on B output during local loopback

BL : LOCAL LOOPBACK B transmitter output connected to B receiver input

- BL = 0 no loopback
 - BL = 1 loopback enabled


* Enabled by TBL bit

TBD : DATA OUTPUT ENABLE (with DISTANT LOOPBACK mode only) TBD = 0 - data not enabled on 104 output (forced to 1) TBD = 1 - data enabled on 104 output during distant loopback

BD : DISTANT LOOPBACK

TxD (103) connected to RxD (104) BD = 0 - no loopback

BD = 1 - loopback enabled

* Enabled by TBD bit

B2 : B1/B2 CHANNEL SELECT B2 = 1 - B2 select B2 = 0 - B1 select

ΤΕΜΙΟ

MATRA MHS

CLKSEI MSB	L A	ADDRESS = 03H		RESET = 00H		R/W CLOC		K SELE	CTION R	EGISTER	LSB
BTYP	BTYP1 BTYP0		REF	REF1		V3	V2		V1	V0	
										•	
BTYP1	BTYP0	IN	OUT	BCLK	PPG	REF1		R	EF0	NREF (kHz	()
0	0	\uparrow	\downarrow	1	no	0			0	2048	
0	1	\downarrow	Ŷ	1	no	0			1	1536	
1	0	\downarrow	Ŷ	1/2	no	1			0	512	
1	1	\downarrow	\uparrow	1	YES	1			1	192	

IN = input sampling edge OUT = output driving edge

PPG = no – input/output on B channel side are simultaneous and synchronized with FSK frame sync clock.

PPG = yes – master/slave mode, input/output operations occur alternatively within 1/8 kHz period.

DOUT is used as I/O pin.

EXAMPLES :

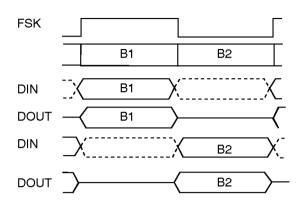
BTYP 1	BTYP 0	BCLK (kHz)*	FSK									
0	0	192		B1				B2		В		
0	1	128		B1				B2				
1	0	512		B1 B2			2	M C/I			/I	
				IN				OUT				
1	1	512		B1	B2	М	C/I	B1	B2	М	C/I	

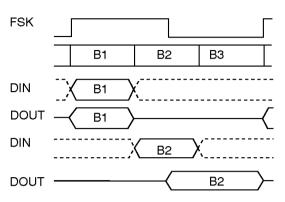
* minimum BCLK values to have the channels as indicated.

V3..0: SYNCHRONOUS TE RATE SELECT, ASYNC TE INTERMEDIATE RATE SELECT

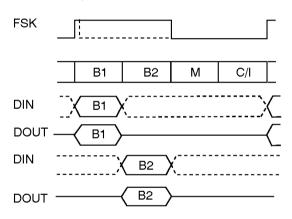
V3			Terminal Speed	Intermediate Speed	Frame	Repetition Coef.		
0	0	0	0	64000 bps	64 kHz	TRANSP.	1	
0	0	0	1	600 bps	8 kHz	80	8	
0	0	1	0	1200 bps	8 kHz	80	4	
0	0	1	1	2400 bps	8 kHz	80	2	
0	1	0	0	3600 bps**	8 kHz	80	1	
0	1	0	1	4800 bps	8 kHz	80	1	
0	1	1	0	7200 bps*	16 kHz	80	1	
0	1	1	1	9600 bps	16 kHz	80	1	
1	0	0	0	12000 bps*	32 kHz	80	1	
1	0	0	1	14400 bps*	32 kHz	80	1	
1	0	1	0	19200 bps	19200 bps 32 kHz 80		1	
1	0	1	1	38400 bps**	64 kHz	32	1	
1	1	0	0	48000 bps	64 kHz	32	1	
1	1	0	1	56000 bps	64 kHz	64	1	
1	1	1	0	57600 bps**	64 kHz	TRANSP.	1	
1	1	1	1	64000 bps	64 kHz	TRANSP.	1	

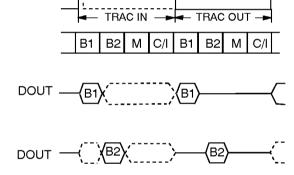
* For 7200/12000/14400 bauds Network Independent Clock is not supported even when programmed. "-" reserved.

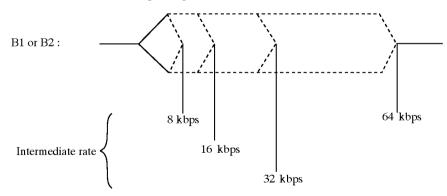

** Values not defined in ECMA 102/V110 recommendations.


TEMIC MATRA MHS

29C93A






c) IOM OPERATING MODE

d) SLD OPERATING MODE

CHANNEL DETAIL (to allow I460 multiplexing)

FSK

ASCLK MSB	ADI	DRESS = 04H	RESET = 40H/2	20H R/W	A	SYNCHRONOU	JS CLOCK PRO	GRAMMING F	REGISTER LSB	
		TRSEL	RRSEL	AR4		AR3	AR2	AR1	AR0	

TRSEL	RRSEL	
0	0	NOT USED
0	1	Receive (remote to local) asynchronous rate select
1	0	Transmit (local to remote) asynchronous rate select
1	1	Same asynchronous rate on receive and transmit side.

For write operation, if receive and transmit rates are different, the user should do two operations, one for each side. If both are the same, a single write is sufficient.

For read operation, TRSEL and RRSEL bits show which side (s) is (are) concerned.

AR4..AR0 Asynchronous rate selection

AR4	AR3	AR2	AR1	AR0	ASYNC. RATE
0	0	0	0	0	50 bps
0 0		0	0	1	75 bps
0	0 0		1	0	110 bps
0	0	0	1	1	150 bps
0	0	1	0	0	200 bps
0	0	1	0	1	300 bps
0	0	1	1	0	600 bps
0	0	1	1	1	1200 bps
0	1	0	0	0	2400 bps
0	1	0	0	1	3600 bps
0	1	0	1	0	4800 bps
0	1	0	1	1	7200 bps
0	1	1	0	0	9600 bps
0	1	1	0	1	12000 bps
0	1	1	1	0	14400 bps
0	1	1	1	1	19200 bps
1	0	0	0	0	38400 bps
1	0	0	0	1	57600 bps

FASYNC ADDRESS = 05H RESET = 00H MSB

ASYNCHRONOUS FORMAT REGISTER

LSB

HO NS1 NS0 ND1 ND0 P2 P1 P0	-								
		H0	NS1	NS0	ND1	ND0	P/	P1	P0

R/W

H0: MCLK SELECT (BAUD RATE GENERATOR)

- 0 7.68 MHz clock select
- 1 12.288 MHz clock select

```
NS1..0: STOP BIT NUMBER SELECT (ASYNC)
```

NS1	NS0	NUMBER OF STOP BITS
0	0	1 parity bit plus 1 stop bit
0	1	1 stop bit
1	0	1.5 stop bit

1 1 2 stop bits

TEMIC

MATRA MHS

29C93A

ND10:	BIT NUMB	ER PER CHA	RACTER (ASYNC)
ND1	ND0	BITS/CHAF	RACTER
0	0	UNUSED	
0	1	5 BITS	
1	0	7 BITS	
1	1	8 BITS	
P20:	ASYNC PAI	RITY ADAP	TATION TO TERMINAL PARITY
P2	P1	PO	
0	0	0	NO PARITY
0	0	1	odd
0	1	0	even
1	0	0	forced to 0
1	1	1	forced to 1

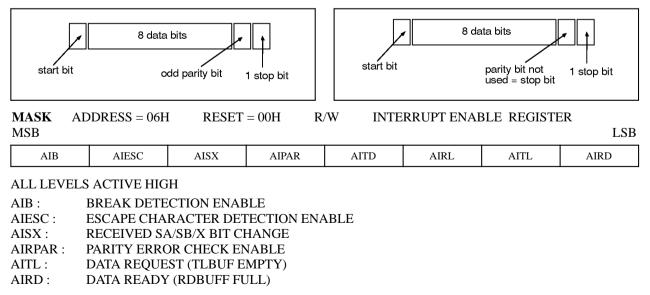
NOTES :

a) when [NS1, NS0] is different than [0, 0], the format given by [ND1, ND0] is parity included. If no parity is used, the parity bit is taken as a normal data bit.

EXAMPLES :

FASYNC = x1111001 / PARITY ODD

FASYNC = x1111000 / NO PARITY



b) When [NS1, NS0] is equal to [0, 0], the format given by [ND1, ND0] is with parity not included. The parity bit and one stop bit are added after 5 or 8 bits.

EXAMPLES :

FASYNC = x0011001 / PARITY ODD

FASYNC = x0011000 / NO PARITY

TEMIC

MATRA MHS

RLBUFF MSB	ADDRESS = 07	'H RESE	$\Gamma = 00H$	R	RECEIVE	ELOCAL REG	GISTER (V24 t	το μΡ) LSB		
			LOCAL SID	E REC	EIVED DATA					
TLBUFF MSB	F ADDRESS = 07H RESET = 00H W TRANSMIT LOCAL REGISTER (μ P to V24) Local side transmitted data									
		L	OCAL SIDE	TRANS	MITTED DAT	A				
RDBUFF MSB	ADDRESS = 08I	H RESET =	00H R	RECH	EIVED DIST	CANT REGIST	ΓER (B channe	l to μP) LSB		
FAR END SIDE RECEIVED DATA										
TDBUFF ADDRESS = 08H RESET = 00H W TRANSMIT DISTANT REGISTER (μP to B channel) MSB LSB										
	FAR END SIDE TRANSMITTED DATA									
RFRM ADDRESS = 09H RESET = EFH R RECEIVE FRAME STATE REGISTER MSB LSI										
BX	SA	SB	SYNC		DAT	RE3	RE2	RE1		
BX : SA :										
SB:	RECEIVED SB BIT STATE 80 bit frame – S4, S9 state 32 bit frame – S4 state									
BX, SA, SI	B are significant on	ly in case of s	ync/interme	ediate	speeds < 48	kbps (80 bit or	· 32 bit frames)			
SYNC :	 3X, SA, SB are significant only in case of sync/intermediate speeds < 48 kbps (80 bit or 32 bit frames). SYNC : SYNCHRO STATE (RECEIVE) This bit indicates TRAC sync state compared to received frame SYNC = 0 - not sync SYNC = 1 - synchronized 									
DAT :	64 BIT F	BIT TRAME – D1 TRAME – D1 TRAME – D1	to D56 data	ı bit sta	ates in receiv	ved frame				

ΤΕΜΙΟ

MATRA MHS

RE3..1 : RECEIVED E3..1 BIT (BIT REPETITION IDENTIFICATION)

RE3		RE2	RE1	81	kbps	16 kbps		32 kbps	REP Fa	ctor	
0		0	1	6	500				8		
0		1	0	1	200				4		
0		1	1	2	400				2		
1		0	0					12000	1		
1	0 1 7200 14400 1										
1 1 0 4800 9600 19200 1											
E RRTD MSB	ADDF	RESS = 09H	RESET = -	– W TRA	ANSMIT	FO DISTANT	T WITH	WRONG	PARITY	LS	
			DISTANT SI	DE TRANSMIT	TED DATA	(with wrong pari	ty)				
E MOD MSB	ADDR	ESS = 0AH	RESET	r = – R	MC	DEM SIGNA	ALS ST.	ATE REGI	STER	LS	
-		-	-	-	-	-		RTS	DT	R	
INTO		RTL are tra	nsmitted towa		terminal v	with wrong parity vith a wrong p R	parity b	it. ERRUPT R	EGISTER		
MSB					1					LSI	
ISEL		PARL	RLI	TLI	PARI	D DS	X	RDI	TD	I	
ISEL : PARL :		ISEL = 0 ISEL = 1	EGISTER SO – no status ch – IA status ch n local side) l – indicates a	ange has ocur ange has occi	ured in IN	T1 register.	RLBUF	F reading 1			
		PARL = 1 resets PA	RL to 0.		n nus bee	I delected III I			KLDUI'I'		
RLI :	REC	resets PA CEIVE LOC	RL to 0. AL BUFFER 1 - indicates that						KLDUIT [®]		
RLI : TLI :		resets PA CEIVE LOC RLI = 1 - ANSMIT LO	AL BUFFER	t RLBUFF is R EMPTY	full, readi	ng RLBUFF c	elears R	LI.	KLDUIT		

DSX :			A/SB/X bit stat	tus change in re	eceived frame,		
RDI :	RECEIVE DIS RDI = 1		ER FULL DBUFF is full,	reading RDBU	IFF clears RDI		
TDI :	Transmit distar TDI = 1		DBUFF is empt	y, writing in Tl	DBUFF clears	TDI.	
IPEBUFF MSB	ADDRESS = 0	BH RESET	$\mathbf{\tilde{c}} = -\mathbf{W}$			IPE BUF	FER LSB
			IPE BU	UFFER			
should be tra	register). Writing ansmitted at least DDRESS = 0CH			-		RUPT REGIST	
ISEL	ESC	BRKL	OVR24	_	DSYNC	BRKD	OVRS
ISEL :		0 – no status cl	URCE hange in INT1 : status change			= 0)	
ESC :			n) of the BEG a	and END bit is	(are) active in 1	ESCMOD regis	ster.
BRKL :		= 1 – indicates	N near end (LOC AIB = 1 (MAS		letection.		
OVR24 :	RLBUF	= 1 – indicates F. RLBUFF ke	eps the last not	t-read value. Fo	ollowing data b	made to overw ovtes coming fro ation if AIRL =	om V24

DSYNC : SYNC STATE CHANGE DSYNC = 1 – indicates a synchronization status change. An interrupt will always be generate (cannot be masked).

(MASK register).

$\label{eq:BRKD:DISTANT BREAK RECEPTION \\ BRKD = 1 - indicates far end (DISTANT) BREAK detection. \\ Interrupt generation if AIB = 1 (MASK register).$

OVRS : B CHANNEL OVERFLOW OVRS = 1 – indicates system overrun. Indicates an attempt has been made to overwrite RDBUFF. RDBUFF keeps the last not-read value. Following data bytes coming from B channel will be lost. Reading RDBUFF clears OVRS. Interrupt generation if AIRD = 1 (MASK register).

TEMIC

MATRA MHS

29C93A

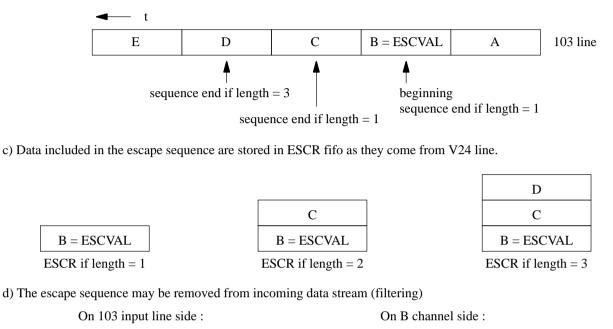
BRKT A MSB	ADDRESS = 0CH	I RESET	'=- W		BREAK	TRANSMISS	SION LSB
_	-	EBKL	-	-	-	EBKD	-
EBKL :				EAK transmiss	sion (2M+3) to	ward the LOC	AL side.
EBKD :	side.		a minimum BR	EAK transmis	sion (2M+3) to	ward the DIST	ANT
ESCMOD MSB	ADDRESS =	0DH RE	SET = 00H	R/W	ESCA	APE MODE RI	EGISTER LSB
0	FSEQ	AUTO	EIEND	EIBEG	ENESC	LONG1	LONG0
FSEQ :	FSEQ =	0 – no filtering	g = 1, the data o	f the escape se	quence (receive	ed on V24 side) are not
AUTO :	AUTO = sequenc	DETECTION = 0 – no autom = 1 – automatic e. The mode c unchanged, b	atic programm mode program hanges to TRA	ing nming after det NSMIT FLOV	ROGRAMMIN tection of the en V CONTROL 1 register (ESCS'	nd of an escape node (CMOD	e register
EIEND :		= 0 – interrupt	disabled		BLE ENCE enabled	l	
EIBEG :		ON "BEGINNI = 0 – interrupt = 1 – interrupt	disabled	-			
ENESC :	inoperat ENESC	= 0 - escape solution tive = 1 - escape solution ed with the byte	equence detect	ion disabled. R ion enabled. A	emainder ESC ll the V24 inco A behaviour de	ming data are	
LONG10 :	ESCAPE SEQ	UENCE LENG	GTH				
LONG1	LONG0			1	1	1. 1 1	. 1 1
0	a	in interrupt.		-	character may		
0					received escap		available
1	0 7 f	The escape sequires which is equi	uence is 2 chara ual to ESCVA	acter long. 2 by L and the seco	the same standard the same standard that was fol END after the	ailable in ESCI lowing it in the	
1	1 7	The escape sequ	ience is 3 chara	acter long. 3 by	tes will be available 3^{rd} r	ai lable in ESC	

ΤΕΜΙΟ

MATRA MHS

ESCSTA MSB	ADDRESS = 0E	H RESE	ET = 00H	R	ESCA	PE STATUS REGIS	STER LSB
ENES	C FC	RPT1	RPT0	WPT1	WPT0	END	BEG
ENESC : FC :		OW CONTRO no mode chan TRAC enters	DL MODE AC ge.		e after the detec	ction of an escape	
RPT10:	-		FIFO				
	RPT1 RPT0 0 0 0 1 1 0 1 1) no ch \rangle show:	aracter receive s next data of t	ed (length of se the escape sequ with WRTP1)		I	
WPT10	: WRITE POINTI	ER ON ESCR	FIFO				
END :	than the l END = 1	the FI shows begin PE SEQUENC – the number ength program – the last data f data received	s the number of ning of the esc E of data receive nmed. of the escape	ed since the beg	from the ginning of the e been received (t	escape sequence is lo hat means, the al to the length	ess
BEG :	BEGINNING O BEG = 0	F AN ESCAP – no escape cl – an escape ch line.	naracter receiv naracter (matcl	ed. hing with ESC	-	as been detected on	
NOTE . a	in these bits will have	to be ignored	II ENESC $= 0$	(escape seque		iisabled)	
ESCR MSB	ADDRESS = 0FH	$\mathbf{RESET} = 00$	OH R	ESC	CAPE SEQUE	NCE RECEIVED	LSB
			3 BYTE L	ONG FIFO			
	acter (s) (1, 2, 3 dep (and including it) are			ned in ESCM	DD register) fo	llowing an escape	character
ESCVAL MSB	ADDRESS = 0FF	H RESET =	= 00H W		ESCAPE C	CODE REGISTER	LSB

This register is used to detect the beginning of an "ESCAPE SEQUENCE". If enabled by ENESC bit, all the characters received on V24-103 line will be compared with it.


ESCAPE CODE VALUE

29C93A

More Details About Escape Sequence

a) An escape sequence begins with an escape character (character B below) that match with ESCVAL value,

b) An escape sequence is 1 (B only), 2 (B and C) or 3 (B, C and D) character long.

_								
	 Е	end	begin.	А		 Е	А	•••••

e) Interrupts may be generated if enabled (status bit unmasked)

sequence length	first character reception	second character reception	third character reception
0	BEG	-	-
1	BEG + END	-	-
2	BEG	END	-
3	BEG	-	END

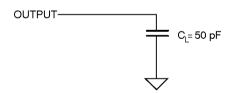
"-" no interrupt or uncompatible with sequence length.

Electrical Characteristics

Absolute Maximum Ratings

VCC to GND :	–0.3 V to + 7 V
Input/Output voltage :	-0.3 V to VCC $+$ 0.3 V

DC Characteristics

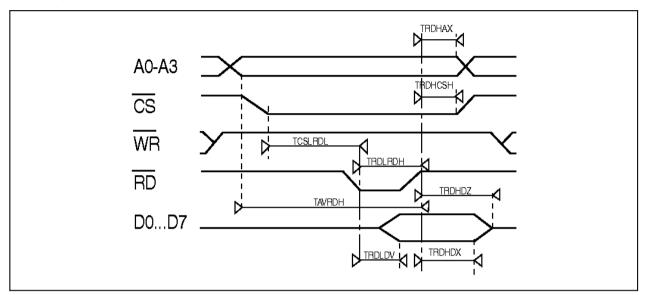

 $V_{CC} = 5 V \pm 10 \%$ TA = 0°C to 70°C

Parameter	Min.	Max.	Unit	Conditions
Low level input voltage VIL		1.5	V	
High level output voltage VIH	2		V	
Low level output voltage VOL		0.4	V	IOL = 13.3 mA
High level output voltage VOH	2.4		V	IOH = 13.3 mA
Input leakage current IIL/IIH	-4	+4	μΑ	Vin = 0 / Vin = VCCmax
3 state output leakage current IOZ	-4	+4	μΑ	V _{CC} = 5.5 V
Standby current ICCO		100	μΑ	Vin = V _{CC} or GND Outputs unloaded, CLK = GND or VCC
Operating current ICC1		20	mA	V _{CC} = 5.5 V, MCLK = 12.288 MHz VIL = GND, VIH = VCC
Operating current in Power Down mode		2	mA	V _{CC} = 5.5 V, MCLK = 12.288 MHz VIL = GND, VIH = VCC

AC Characteristics

VCC = 5 V \pm 10 % TA = 0 °C to 70 °C

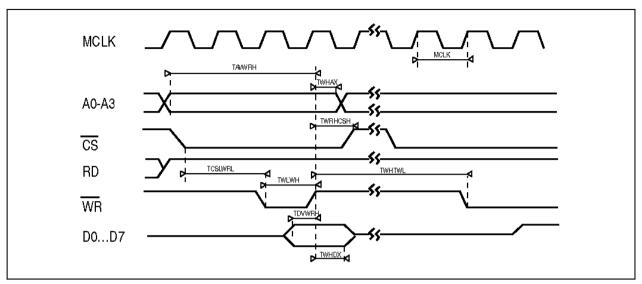
Load Circuit


ΤΕΜΙΟ

MATRA MHS

29C93A

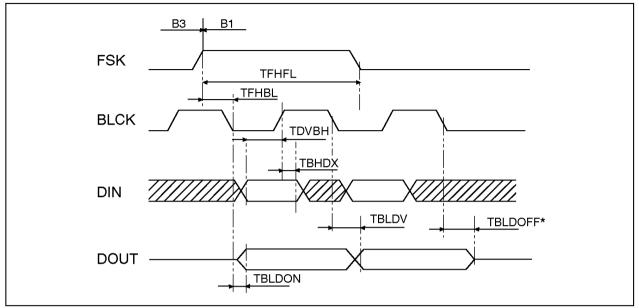
Timings


Read Cycle

Symbol	Parameter	Min	Max	Unit
TVARDH	address valid to read high set up time	30		ns
TRDLRDH	minimum read pulse	40		ns
TCSLRDL	chip select low to read low	0		ns
TRDLDV	read low to data valid		40	ns
TRDHAX	hold address from read high	0		ns
TRDHCSH	chip select high to read high	0		ns
TRDHDX	data hold from read high	8		ns
TRDHDZ	data high Z from read high		30	ns

TEMIC MATRA MHS

Write Cycle



Symbol	Parameter	Min	Max	Unit
TWLWH	minimum write pulse	20		ns
TDVWRH	data set up to write high	10		ns
TWHDX	hold data from write high	10		ns
TCSLWRL	chip select low to write low	0		ns
TWHAX	hold address from write high	10		ns
TWRHCSH	chip select high from write high	0		ns
TAVWRH	address set up to write high	12		ns
TWHTWL	write high to write low	2		MCLK

ΤΕΜΙΟ

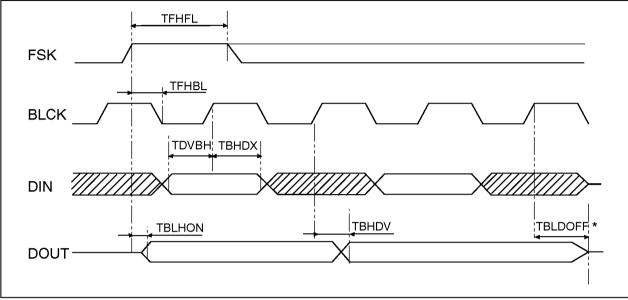
MATRA MHS


AMD Timing

* For the last data bit in the channel, here with a 16 kHz intermediate rate.

Symbol	Parameter	Min	Max	Unit
TFHBL	FSK high to BCLK low	20		ns
TFHFL	minimum FSK pulse	1		BCLK
TDVBL	data in set up to BCLK low	50		ns
TBHDX	hold data in from BCLK low	50		ns
TBLDON	data out valid from BCLK low (first data bit)		50	ns
TBLDV	data out valid from BCLK low		40	ns
TBLDOFF	data out high-Z from BCLK low (last data bit/channel)		50	ns

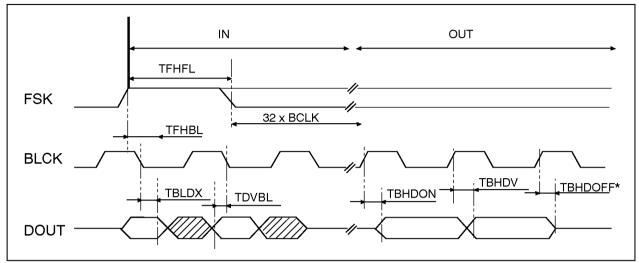
SSI Timing


* For the last data bit in the channel, here with a 16 kHz intermediate rate.

Symbol	Parameter	Min	Max	Unit
TFHBL	FSK high to BCLK low	20		ns
TFHFL	minimum FSK pulse	1		BCLK
TDVBL	data in set up to BCLK low	50		ns
TBLDX	hold data in from BCLK low	50		ns
TFHDON	data out valid from FSK high (first data bit)		50	ns
TBHDV	data out valid from BCLK high		40	ns
TBHDOFF	data out high-Z from BCLK high (last data bit/channel)		50	ns

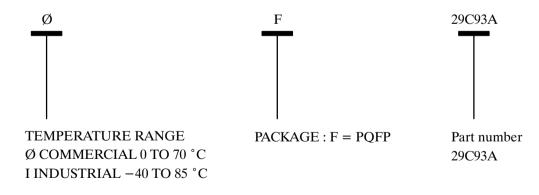
ΤΕΜΙΟ

MATRA MHS


IOM Timing

* For the last data bit in the channel, here with a 16 kHz intermediate rate.

Symbol	Parameter	Min	Max	Unit
TFHBL	FSK high to BCLK low	20		ns
TFHFL	minimum FSK pulse	1		BCLK
TDVBL	data in set up to BCLK high	50		ns
TBHDX	hold data in from BCLK high	50		ns
TFHDON	data out valid from FSK high (first data bit)		50	ns
TBHDV	data out valid from BCLK high		40	ns
TBHDOFF	data out high-Z from BCLK high (last data bit/channel)		50	ns


SLD Timing

* For the last data bit in the channel, here with a 16 kHz intermediate rate.

Symbol	Parameter	Min	Max	Unit
TFHBL	FSK high to BCLK low	20		ns
TFHFL	minimum FSK pulse	1		BCLK
TDVBL	data in set up to BCLK low	50		ns
TBLDX	hold data in from BCLK low	50		ns
TBHDON	data out valid from BCLK high (first data bit)		50	ns
TBHDV	data out valid from BCLK high		40	ns
TBHDOFF	data out high-Z from BCLK high (last data bit/channel)		50	ns

Ordering Information

The information contained herein is subject to change without notice. No responsibility is assumed by MATRA MHS SA for using this publication and/or circuits described herein : nor for any possible infringements of patents or other rights of third parties which may result from its use.